

The software identifies

- Nuclear regions (purple; selected objects)
 - Cytoplasmic region (red ring; purple nuclear areas excluded)

High-content imaging outcomes

Masking

The software calculates

 Mean fluorescence intensity of TMRM within the cytoplasmic regions

Note: TMRM signals are indicated as yellow

Supplemental Figure 1. Quantitative analysis of high-content imaging of TMRM (Related to Figure 5A-B). Representative images of two channels for nuclei (blue) and cytoplasmic TMRM signals (red) using high-content ArrayScan imaging. The images were analyzed with a mask modifier for Hoechst-stained nuclei and TMRM signals restricted to cytoplasmic area. Scale bar 100 µm.

Component	Vendor	Cat#	Stock	Final	Volume for
			concentration	concentration	100 mL
DMEM	Gibco	11995-065	100%	87%	87 ml
Heat-inactivated	VWR	SH30396.03HI	100%	10%	10 ml
fetal bovine serum					
Glutamax-I	Fisher	35050079	100 x	1%	1 ml
	Scientific				
Non-essential amino	Fisher	11140050	100 x	1%	1 ml
acids	Scientific				
Oleic acid	Sigma	O3008-5 ML	400 mM	100 µM	25 µl
	Aldrich				-
Palmitic acid	Sigma	P5585-25 G	500 mM	50 µM	10 µl
	Aldrich				-
Penicillin-	Gibco	15140-122	100 x	1%	1 ml
Streptomycin					

Supplemental Table 1. Maturation medium

Supplemental Table 2. Primers for qPCR of mtDNA/nDNA ratio

Genes	Description	Sequence	References
DHA	succinate dehydrogenase subunit A	Forward: TCTCCAGTGGCCAACAGTGTT	1
		Reverse: GCCCTCTTGTTCCCAT CAAC	
LPL	lipoprotein lipase	Forward: CGAGTCGTCTTTCTCCTGAT	2
		Reverse: TTCTGGATTCCAATGCTTCGA	
ND	NADH dehydrogenase subunit	F Forward: CCCTAAAACCCGCCACATCT	1
		Reverse: GCGATGGTGAGAGCTAAGGT	
mtCO2	mitochondrial cytochrome oxidase II	Forward: CGATCCCTCCCTTAC	3
		Reverse: GAGAGGGGGGAGAGCAAT	

References

- 1 Chong, J. J. *et al.* Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. *Nature* **510**, 273-277, doi:10.1038/nature13233 (2014).
- ² Gonzalez-Halphen, D., Ghelli, A., Iommarini, L., Carelli, V. & Esposti, M. D. Mitochondrial complex I and cell death: a semi-automatic shotgun model. *Cell Death Dis* **2**, e222, doi:10.1038/cddis.2011.107 (2011).
- 3 Cinsley Gentillon 1, D. L., Meixue Duan 2, Wen-Mei Yu et AL. . Targeting HIF-1α in combination with PPARα activation and postnatal factors promotes the metabolic maturation of human induced pluripotent stem cell-derived cardiomyocytes. *J Mol Cell Cardio*, J Mol Cell Cardio (2019).